MASTER OF ARTS/SCIENCE IN GEOGRAPHY BODOLAND UNIVERSITY KOKRAJHAR-783370 BTR, ASSAM

MASTER'S PROGRAMME DETAILS

PROGRAMME OBJECTIVES (POs)

The 'Master of Arts in Geography' programme offered by the department, "aims at empowering students with knowledge and skills for spatial thinking and analysis, to navigate real world problems, and contribute to society in a meaningful way".

PROGRAM OUTCOMES (PO)

Geography is a diverse discipline that bridges the arts and social and natural sciences, providing a comprehensive education that discusses pressing issues including environmental change, regional and global inequalities and the transmutation of global economy and culture. Geography studies the places and the relationships between people and their environments. Geographers explore both the physical properties of Earth's surface and the human societies spread across it. By studying Geography students obtain a unified view of the rapidly-changing world and how society influences, and is influenced by it.

The Bodoland University Geography focuses on the interrelationship between physical and human environment. The Department was established under the faculty of Environment Studies, in August 2015, and is committed to deliver its curriculum to resume education for the refurbishment of our physical and social environment. Thus anybody wants a career that too takes him outside the walls of an office, or allows solving global problems. The degrees in geography offer concentrations to prepare Post Graduates for multiple career paths.

From the PG teachings students get to know about human and natural system that defines the evolving discipline to answer the fundamental questions of global importance through innovative, engaged and relevant teaching and research.

The PG in Geography of BU disseminate geographical knowledge through mentorship model to graduate master's to meet the challenges associated with the continuing evolution of geographic science and reach the highest international standards.

The programme also provides a learning environment that nourishes knowledge, skills and wisdom with lively educational experiences.

PROGRAMME SPECIFIC OUTCOMES (PSOS)

At the end of the two-year (four-semester) course, students will have comprehensive knowledge about contemporary issues in geography, both physical and human. The M.A. / M.Sc. in geography program offer students the opportunity to advance their career aspirations through advanced study in the classroom and in the field. The programme in geography is tailored to meet the students' specific educational, research and professional goals in mind. It focuses on spatial studies, qualitative as well as quantitative, and emphasizes on human-environment relationship.

PROGRAMME STRUCTURE

The Master's programme is a two-year course	Year	Semester	Semester
divided into four-semesters. A student is			
required to complete 90 credits for the			
completion of course and the award of degree.			
Part – I	First Year	Semester I	Semester II
Part – II	Second Year	Semester III	Semester IV

Semester		Core Courses		Elective C Open Elec	ourses / tive Course	Total No. of Papers	Grand Total Credits	
	No. of papers	Credits (per paper)	Total Credits	No. of papers	Credits (per paper)	Total Credits	No. of papers	Total Credits
Ι	4+1	4 (Theory) 5 (practical)	21	1	2	2	6	23
Π	4+1	4 (Theory) 5 (practical)	21	1	2	2	6	23
III	4+1	4 (Theory) 5 (practical)	21	1	3	3	6	25
IV	4+1	4 (Theory) 6 (Dissertation)	22				5	25
Total	20		85	3	7	7	23	92

- All courses, whether Core and Elective, will have 5 hours of teaching per week. However, in practical courses, the equivalent of one-hour of lecture/tutorial (L/T) will be two-hours practical (P).
- (*) In-lieu of up to two Elective courses of the department (in semesters I and/or II), students can offer Open Electives courses of 2 credits from other departments.
- Duration of examination of each course shall be 3 hours (for Theory courses) and 4 hours (for Practical courses).
- Each course will be of 100 marks, out of which 80 marks shall be allocated for semester examination, and 20 marks for internal assessment.

The semester wise details of Master's Course and its outcome are given below.

SEMESTER-I

Paper code	Credit	Credit Distribution (L+T+P)	End Semester Marks	Internal Marks	Total Marks	Paper Name	Course Outcome
GGY T-101	4	3+1+0	80	20	100	Geomorphology	CO1 Explaining the Fundamentals of Geotectonics and Geomorphology CO2 Understanding crustal mobility and tectonics; with special emphasis on their role in landform development CO3 Establishing the relationships between landforms, processes and underlying structure CO 4 Overview and critical appraisal of
							landform development and climate
GGY T-102	4	3+1+0	80	20	100	Climatology	CO 1 - Understanding the dynamics of the Earth's atmosphere and global climateCO 2 - Explaining process of heat energy transfer and its effect on sea level, biodiversity, migration and human health. CO3 concept and measurementof atmospheric moisture, condensation and assessment of global distribution of moisture content CO 4 - Assessing the climatic disturbances and interpretation and generation of climatic information
GGY T-103	4	3+1+0	80	20	100	Geographic Thoughts	CO1 Place of Geography in the classification ofknowledge CO2 Contribution of Mediaeval period in geographical knowledge and role of discoveries and renaissance on emergenceof modern Geography CO3 Foundation of modern Geography CO4 Evolution of Geographic thought
GGY T-104	4	3+1+0	80	20	100	Cartographic Methods and Quantitative techniques	 CO1 This paper will provide knowledge on the fundamental concepts of cartography, preparation of map with the concept of scale, symbols and map designs. CO2 The paper provides the knowledge and abilities to understand the basic principles of map projection and its importance in mapping a particular region in two dimensional sheet of paper

	1	1	1	1	1		
GGY P-105	5	1+0+3	80	20	100	Practical on Geomorphology Climatology and Cartographic Methods	CO3 The paper also describes about the various methods of surveying and its use in present day context. CO4 It also helps to learn the various quantitative techniques and helps to resolve various socio-cultural issues. CO5 Overall the paper enhances the learner to resolve various issuesrelating to spatial attributes. CO1 – Interpreting, reading, analyzing and determination of slope, relative relief etc together with watershed study using Topographical Maps CO 2 – Analysis of climatic data using geographical data through Cartograms CO 3 – Drawing of maps withthe help of map projections CO 6 – Using statistical techniques in order to summarize, represent, analyze and interpret data
Department w	vill cho	oose one o	f the follow	ving t	hree e	lective papers	
GGYT- 106 (OE)	2	2+0+0	50	0	50	 Environment and Sustainable Development Basics of Cartography and GIS Natural Hazards andDisaster 	 Course Outcome of T- 106 (ENVIRONMENTAND SUSTAINABLE DEVELOPMENT) CO1 Describe developmental history and concept of sustainability and itsimportance towards environment, economy and environment CO2 Describe concept of resource, resourcemanagement and sustainability CO3 Describe concept of develop and developing countries, development parameters CO4Describe and classify global income inequality, measuring inequality and wellbeing within countries CO5 Describe environmental strategies towards human

			populationandsustainability, ecology, economyandsustainable developmentCO6Describevaripussustainable developmentgoalsCO7Understand and describeclimatechange, sustainabledevelopmentand adaptivestrategiesCO8Describeenergy and sustainabledevelopment, cleanenergy and sustainabledevelopmenteconomicandsocialimpactofenergyCO9Able todescribe policy andpoliticsofenergy, international
			politics of energy, international politics of climate change

SEMESTER-II

Paper code	Credit	Credit Distribution (L+T+P)	End Semester Marks	Internal Marks	TotalMark s	Paper Name		Course Outcome
GGY T-201	4	3+1+0	80	20	100	Geography	ofIndia	CO1 Physical background of India as a geographicalentity CO2 Understanding of demography and its socio- economic, cultural implication; factors and processes of location of industries CO3 India's geopolitical and economic position in Asia and India CO4 Unity in diversity of North East India

GGY T202	4	3+1+0	80	20	100	Economic	CO1 Able to describe the
						Geography	fundamentals of economic
							geography; scope, recent trends,
							relation of economic geography
							with economics and other branches
							of social sciences
							CO2 Classify economies sectors
							(primary, secondary and tertiary),
							classification and
							evolution of resources, Functional
							theory of resources
							CO3 Describe place of agriculture
							in global economy, model of
							agricultural land use,
							large
							scale and small-scale agriculture,
							world
							distribution factors and patterns of
							location
							of different agriculturalproducts.
							CO4 Describe place of Industries in
							global economy, industrial location
							theory,
							classification of industries:
							Resource based and
							footloose industries, world
							distribution factors and
							patterns of location of
							different industries.
							CO5 Describe the economic
							geography of international trade;
							Special EconomicZones
							(SEZ); regional trade blocs of the
							world: WTO, BRICS, ASEAN,
							SAARC and EU,
							levels of economic
							Development globally.

GGY T-203	4	3+1+0	80	20	100	Population and	CO1 Defining the field of
						Settlement	Population Geography;
						Geography	population- resource
							regions; Conceptual bases
							of under population,
							optimum population, over
							population, population
							explosion and population
							pressure
							CO2 Components of
							population growth: fertility,
							mortality and migration:
							Population composition:
							Demographic Transition
							theory.
							Global and local food
							security issues
							CO3 Defining the field of
							settlement of geography;
							rigin of settlement growth
							of rural and urban
							settlements; Tribal
							settlements of North East
							India
							CO4 Function and
							morphology of rural and
							urban settlements;
GGY T-204	4	3+1+0	80	20	100	Social,	CO1 Fundamentals of social
						Cultural and	geography, element and
						Political	components of culture;
						Geography	cultural changes:
							perception, Diffusion of
							ethnic traits in world as well
							as India;
							ethnic landscape and
							economy of the area,
							Patterns of livelihood:
							various economic activities
							& cultural adaptations
							CO2 Nature and
							development of social
							geography;
							Space and society:
							Understanding society and
							its structure and process;
							geographical bases of

							social formations; CO3 Emergence and development of political geography; approaches to study; major schools of thought, Geographic CO4 Themes in Political Geography: State, Nation, Nation-State and Nation- building, Frontiers and boundaries
GGY P-205	5	1+0+3	80	20	100	Quantitative Techniques in Geography	CO1 Measures of central tendency: mean, median, mode; Measure of dispersion Elementary matrix algebra: addition, multiplication and determinants of matrix CO2 Correlation and Regression, regression residual Lorenz curve, Gini's Coefficient CO3 Crop intensity Pie chart Histogram and bar graph Moving average CO4 Study of population settlement and preparation of field study report
Departr	nent wi	ll choose one	e of the fo	llowing tw	o electiv	e papers	2 1
GGY206(OE)	2	2+0+0	50		50	1.Agricultural Geography2.Climate Change and Adaptations	Climate Change and adaptation CO1 science of climate change; Approaches of Climate Change; Measuring Climate Change: risk and vulnerability related to climatic hazards and disasters. CO2 Assessment in fragile ecosystems; Mountain, Desert and Coastal CO3 Role of Indigenous Traditional Knowledge

		(ITK) and	Resilience	for
		Future Susta	inability	
		CO4 SDC	Gs Appro	bach,
		International	l Cli	mate
		Change Ag	greements	and
		Local Gover	mance	

SEMESTER-III

Pape	Credi	Credit	End	Internal	Tota	Paper Name	
r	t	Distribut	Semes	Marks	1		
code		ion	ter		Mar		
		(L+T+P)	Marks		ks		
GGY T-301	4	3+1+0	80	20	100	Regional Planning and Development	CO1 This paper explains about the concepts of region, development of the concept and the process of regionalization. CO2. The paper provides knowledge on the various processes of regionalization and its implication for the country like India.
							CO3. It thoroughly analyze the various planning approaches adopted in the country like India and its outcomes.
							CO4 The paper helps the learner to understand the various methods of regional planning.
							CO5. Overall this paper helps to understand the need and importance of regional geographic studies and various development strategies.
GGY T-302	4	3+1+0	80	20	100	Basics of Remote Sensing And GIS	CO1 Able to describe various aspects of remote sensing like development of remote

							sensing, various space programmers, basic concept, principles, and systems of remote sensing CO2 Describe various aspects of satellites and orbital characteristics CO3 Describe principle of aerial photography and image generation and processing techniques CO4 Describe principal characteristics and functional mechanism of microwave remote sensing CO5 Describe geographic information system and global positioning system CO5 Able to classify types of satellite data, field of application and its characteristics CO6 Able to classification land use and land cover mapping CO7 Describe concept of
							CO7 Describe concept of resource management, hazard and environment
GGY T-303	4	3+1+0	80	20	100	Research Methodology	managementAfter completion of thiscourse the student will beable to:CO1Understand whatresearch is, formulatehypothesis, set objectivesand design a study.CO2Differentiatebetweeninductiveanddeductive
							approach of research. CO3 Distinguish among various tools and techniques of data collection.

							CO4 Understand
							CO4 Understand
							plagiarism and structure of
	-						a research report.
GGY T-304	4	3+1+0	80	20	100	Environmental	CO1 Describe meaning,
						Geography	scope, and approaches of
							environmental geography
							CO2 Classify types of
							environment differences
							between environment and
							society
							society,
							relationship between
							environment and
							development
							CO3 Describe and
							understand environmental
							perception and cognitive
							maps;
							biogeography definition,
							meaning, concept of bio-
							diversity: ecosystem and
							plant-
							animal association in
							varying habitate and
							anvironmente hieme tunes
							environments, biome types,
							and concept
							of blodiversity
							CO4 Describe
							environmental pollution:
							pollutants, sources and
							types of pollution; Water,
							soil, air, and noise
							pollution; solid waste
							disposal; environmental
							pollution and health:
							environmental education:
							environmental impact
							analysis any ironmental
							monitoring and standards
							anvinonmental actions in
							environmental policy and
							legislation; environmental
							management
							CO5 Describe soil
							formation factors: parent
							material, organic, climatic,

							topographic, Spatio-temporal; processes of soil formation and soil development: physical, biotic and chemical; soil profile: different layers of soil and soil types CO6 Describe physical properties of soil morphology, texture, structure, water, air, temperature and other properties of soil CO7 Describe chemical Properties of soil and soil reaction CO8 Describe concepts of soil erosion, degradation, and conservation
GGY P-305	5	1+0+3	80	20	100	Digital Cartography and Survey	CO1 Describe GIS data types, data structure, geo- referencing; editing and output; overlays CO2 Describe mapping and ground truth verification CO3 Write about different thematic maps and represent socio-economic data (Choropleth, isopleths method) CO4 Describe bar graph, pie graph, sphere diagram, flow chart, isolines and transect chart CO5 Write and describe land use and land cover, urban sprawl, forests monitoring, flood monitoring CO6 Describe traversing and topographic surveying

									with the help of Plane tabling (radiation, intersection and resection) CO7 Describe traversing and topographic surveying with the help of prismatic compass (Open and Closed traversing) CO8 Describe traversing and topographic surveying with the help of theodolite (traversing and height determination) CO9 Describe topographic surveying with the help of dumpy level (leveling and contouring)
ļ	Denart	ment wi	ll choose on	e of the fo	llowing tu	vo electi	Ve t	naners	contouring)
	GGY306 (DSE)	3	11 choose on 3+0+0	e of the fo	20		2.	Population Data and its use in social Geography Environment and Ecology	After completion of Population Data and its use in social Geography student will be able to: CO1 Know nature and different sources of population data and their use in social geography and problems associated with them. CO2 Get familiar with national level surveys like National Family Health Survey (NFHS), India Human Development Survey (IHDS), National Sample Survey Organization Surveys, etc., besides Census, VRS and SRS. CO3 Understand dynamics of age-sex structure and ageing.

:

SEMESTER– IV SPECIAL PAPERS FOR GEOMORPHOLOGY

Paper code	Credit	Marks	Paper Name	
GGY T-401	4	100	Advance	CO1 Able to describe
			Geomorphology	fundamental concepts and
				development of
				geomorphology and
				thoughts during 20th
				Century
				CO2 Able to describe
				major contemporary
				methodologies:
				morphology based, climate
				based, process based, and
				geotechnical science based
				CO3 Able to understand
				and describe concept of
				time and space in
				geomorphology,
				nature
				of time, sampling of time,
				entropy and equilibrium,
				nature of space, scale,
				distance
				and correctness
				CO4 Able to describe
				different theories of
				landform evolution and
				development
				proponded by G.K.Gilbert,
				W.M.Davis, W.Penck,
				L.C.King, J.T.Hack,
				M.Morisawa, and S.A.
				Schumm, significance and
				need of theories in
				geomorphology
				CUS Able to describe
				evolution of landforms hill
				siope development,
				earthquake and
				earth
				interior, tectonic
				geomorphology, karst
				topography Range of

				coastal landforms
				marine sediments and the
				ocean floor atoll
				formation periglacial
				normation, perigracian
				geomorphology,
				vulcanicity and landforms
				denudation chronology,
				erosion and peneplains
				drainage
				system, patterns and
				evolution of landforms and
				drainage in domal, faulted
				and
				folded structure
				CO6 Able to describe
				regional geomorphology of
				north east India mountain
				huilding
				and
				orogenic belts the
				avolution of fold
				evolution of fold
				mountains in the world.
				CO/ Able to describe the
				morphometry and
				geomorphology of
				continents and
				escarpment
				study
				CO8 Able to describe
				emergence of applied
				geomorphology,
				application of spatial
				technology in
				geomorphological studie:
				process landform land use
				and
				settlement
				transport and
				communication and
				communication, and
	4	100	England (1	CO1 Ema
GGY 1-402	4	100	Environmental	COI Emergence of
			Geomorphology	environmental
				geomorphology;
				Geomorphology and
				environmental
				management;

				Climate change and environmental geomorphology, past and present CO2 Environmental Hazards: Classification, Causes and Distribution CO3 Human and ecological impacts; Risk assessment and vulnerability analysis; National preparedness and adaptation strategies CO4 Concept and History of tropical GeomorphologyThe tropical environment, Climatic elements and its effects
GGY T-403	4	100	Fluvial Geomorpholog y	CO1 evolution of fluvial geomorphology; Relation between fluvial geomorphology and hydrology Drainage basin as a fluvial system CO2 Channel process: forces acting in channel, velocity distribution, flow types and water and sediment discharge in channel, channel erosion and deposition CO3 Fluvial –geomorphic hazards: flood and bank erosion CO4 Human impact on river basins and fluvial systems: effects of basin, land-use and land cover changes, hydrology and channel morphology. Modern methods and techniques in fluvial geomorphological studies

GGY P-404	4	100	Geomorphologi	CO1 Able to describe river
			calTechniques	basin and stream ordering,
			_	bifurcation ratio, lengthratio,
				basin circularity ratio, lawsof
				stream number, streamlength
				and drainage basin area, etc
				CO2 Able to describedrainage
				density, drainage frequency
				and drainagetexture map
				CO3 Able to write on grain-
				size characteristics of alluvial
				sediments
				CO4 Able to describe the
				results of basin area and
				stream discharge, and flood
				frequency
				CO5 Able to describe
				hypsometric curve and
				integral, altimetric
				frequency curve and
				histogram , longitudinal
				profile and cross section CO6
				Able to describe rock
				characteristics, identification
				and site suitability manning
				river breiding, tectonic and
				river valley development
				(William B Bull's method)
				rose diagram in
				geomorphology
GGV 405	6	100	Dissertation	After completion of this course
001 403	0	100	Dissertation	the student will be able to:
				CO1 Eormulate
				research problem set
				objectives and prepare
				study design
				CO2 Distinguish
				between tools and
				techniques of data
				collection and prepare data
				collection tools and implement
				them in real world situation.
				CO3 Analyze data in
				software package and daw
				policy oriented conclusions.
				CO4 Take up any
				research in the field of
				Geomorphology

SPECIAL PAPER FOR POPULATION GEOGRAPHY

Paper code	Credit	Marks	Paper Name	
GGY T-401	4	100	Dynamics of	After completion of
			Fertility	
			and Mortality	this course the student
				will be able to:
				CO1 Understand
				fertility and mortality
				transitions around the
				globe.
				CO2 Understand the
				concept of below
				replacement level
				fertility and its
				implications
				CO3 Critically
				avaluate various
				theories of fortility
				and relate with the
				and relate with the
				COA Krasse las dina
				CO4 Know leading
				causes of deaths
				CO5 Understand
				ageing and
				demographic
				dividend.
GGY T-402	4	100	Migration and	After completion of
			Related	
			Issues	this course student
				will be able to:
				CO1 Understand
				causes and
				consequences of
				internal and
				International
				migration, and
				migration related
				problems in North-
				East India.
				CO2 Identify sources
				of migration data and
				related problems.
				CO3 Critically
				evaluate various
				migration related
				theories and
				understand their
				applicability in real

				world situation.
				CO4 Calculate and
				interpret different
				measures of
				migration.
GGY T-403	4	100	Population, Resource	CO1 The paper
			and Development	describes about the
				various views
				regarding the
				population growth
				and helps to learn the
				concepts of various
				theories and its basis
				of postulation
				CO^2 The paper beins
				to cater knowledge on
				population and its
				relation with the
				CO3 It helps to
				discuss about the
				various population
				various population
				its relevance to
				its relevance to
				the country like India.
				CO4 It critically
				analyse the National
				Population Policy
				2000, National Health
				Policy
				2002, and National
				Rural Health Mission
				2005 etc.
GGY P-404	4	100	Practicing Population	After completion of
			Geography (Practical)	this course the student
				will be able to:
				CO1 Calculate and
				interpret different
				indicators of fertility
				and mortality.
				CO2 Calculate and
				interpret different
				indicators of human
				development
				indicators.
				CO3 Analyze large

				scale data using Statistical Package for Social Sciences (SPSS) and draw meaningful conclusions based onthe results.
GGY405	6	100	Dissertation	After completion of this course the student will be able to: CO1 Formulate research problem, set objectives, and prepare study design. CO2 Distinguish between tools and techniques of data collection and prepare data collection tools and implement them in real world situation. CO3 Analyze data in software package anddraw policy oriented conclusions. CO4 Take up any research in the fieldof Population Geography with minimum guidance.